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Summary—A feasibility study was made on a TEq; mode circular
waveguide resonance isolator at frequencies near 35 Gc. A design
was developed which utilized circumferentially oriented and mag-
netized thin rings of hexagonal ferrite material in contact with
the inner or outer surface of a ring of alumina ceramic mounted con-
centrically in the waveguide. Approximate experimental measure-
ments indicated that appreciable nonreciprocal attenuation could be
obtained without severe degradation of the mode purity. Expressions
are given for the field distributions in the dielectric ring loaded wave
guide and for the ellipticity of the magnetic fields at the surfaces of
the ring. Magnetic field ellipticity is computed as a function of a
“slow-wave mode” cutoff constant for an experimental ring con-
figuration. For sufficiently large values of this constant, the magnetic
fields at the boundary are almost circularly polarized and are rela-
tively independent of mean ring radius. The analytical results tend to
support the experimental findings.

I. INTRODUCTION

T IS WELL KNOWN that energy can be trans-
I[ mitted in the TEy circular waveguide mode with

very low attenuation per unit length and at very
high peak power levels. Furthermore, under optimum
transmission conditions, the energy loss per unit length
for this mode is less than that for more conventional
modes of propagation. For this reason, the circular elec-
tric mode has long been of interest for millimeter wave
transmission applications. Other applications may fol-
low as a result of the recent development of high power
millimeter wave tubes which convert energy directly to
this mode. The development of standard TE circular
waveguide components is therefore a matter of some
practical interest. This paper is a report of the experi-
mental and analytical findings of a feasibility study of a
TEg mode resonance isolator at frequencies near 35 Ge.
Although the isolator which evolved from this study did
not meet exacting stands for attenuation and mode pur-
ity, the study indicated feasibility and provided useful
design information.

A basic design for a ferrite resonance isolator operat-
ing in the TEg circular waveguide mode has been given
by Fox, Miller and Weiss [1]. The design which they
suggest utilizes a thin, circumferentially magnetized,
ferrite ring located concentrically in the circular wave-
guide and having a radius for which the RF magnetic
fields in the ferrite are almost circularly polarized in a

plane normal to the direction of magnetization.
|
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There are serious practical problems associated with
resonant ring configurations.

1) The ferrite must be circumferentially magnetized
with a very strong dc magnetic field, but there is
no practical way of applying this field internally.

2) The basic mode of propagation is a higher order
mode which may readily convert to other modes
at an asymmetric discontinuity or obstacle. Thus,
the maintenance of mode purity may be difficult.

The first problem has been overcome through the
development of oriented hexagonal, ferrite materials
capable of providing high internal anisotropy fields in
the direction of crystal orientation. It was found that
circumferentially oriented ferrite rings could be fabri-
cated with an internal, circumferential anisotropy field
of approximately 11,500 ocersteds,! so that they were
capable of resonance at 35 Gc.

It was difficult to estimate the magnitude of the mode
purity problem. The number of possible propagating
modes was restricted to ten by using a waveguide diam-
eter of 0.634 inch over an operating frequency range of
33-37 Gc. Higher order TE, modes were cut off in the
empty waveguide. However, there was a possibility of
exciting them in the section of waveguide containing the
ferrite ring. It was felt that the circular symmetry of
the ferrite ring would prevent excitation of circularly
asymmetric modes, but that these might be excited to
some extent by misalignment of the rings. Ultimately,
the utility of the design could only be determined by
experimentation.

I1. DEsIGN APPROACH

The theory of operation of ferrite resonance isolators
has been discussed by a number of authors [1], [2].
In designing for practical applications, one attempts to
locate a small ferrite element inside a transmission line
or waveguide in a region where the RF magnetic fields
are circularly polarized, with the sense of circular polar-
ization dependent on the direction of propagation.
When the ferrite is magnetized to resonance in a direc-
tion normal to the plane of circular polarization, it
interacts strongly with the RF fields for propagation in
one direction, but does not interact with energy propa-
gating in the opposite direction. One generally computes
the location of the region of circular polarization for

! Fabricated for USAERDL by North American Philips Labs.,
Irvington-on-Hudson, N. Y., under Contract DA36-039 SC-85279;
July, 1950-July, 1961.
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the unperturbed transmission structure, locates the fer-
rite in this region and then proceeds to optimize the
design by “cut and try” methods. This procedure is
generally useful in constructing isolators for any trans-
mission structure and may be applied to the design
under consideration here.

Basic design computations are readily carried out for
the configuration described by Fox, Miller and Weiss
[1]. The RF magnetic fields in TEy circular waveguide
have radial and longitudinal components in phase quad-
rature. The circularly polarized regions are found by
determining radii for which the magnitudes of these
components are equal. These regions are infinitely thin
cylinders having either of two radii obtained as a solu-
tion of

]12(]857') . 1
T(ka)  ket/kd — 1

(0

where Jo(k,) and Ji(k.r) are zero and first-order Bessel
functions of argument ks, The constants are £k,
=3.8317/a, a constant related to the waveguide cutoff
frequency; ko=w~/poeo = 21/Ny, the free space propaga-
tion constant; Ap=free space wavelength; a=guide
radius. For a waveguide of radius 0.317 inch, the radii
of circular polarization at 35 Gc are approximately
0.109 inch and 0.263 inch. The radii calculated from (1)
are sensitive functions of frequency. For this reason the
Fox, Miller and Weiss configuration should operate
satisfactorily over relatively narrow bandwidths. To de-
vise a broad-band configuration for the circular electric
mode, it is instructive to consider a broad-band con-
figuration used in TE;, mode rectangular waveguide.
Reasoning by analogy, we may arrive at an appropriate
TEy circular waveguide configuration.

A broad-band resonance isolator may be constructed
in TE;; mode rectangular waveguide loaded by a thin
dielectric slab of relatively high permittivity, extending
completely across its narrow dimension and located
laterally near the waveguide center line [3]. The dielec-
tric slab tends to confine the circularly polarized region
at, or very near, its surface for a wide range of fre-
quencies [4]. An isolator may be constructed by placing
a thin ferrite slab adjacent to the dielectric slab and
magnetizing it in a direction normal to the broad wall of
the waveguide. The attenuation of the isolator is then
primarily a function of the ferrite magnetization and
linewidth but not of its location. Optimum concentra-
tion of the RF field in the ferrite region is obtained by
experimentally adjusting the location and thickness of
the dielectric slab.

The circular waveguide analog of this design con-
sists of a concentrically mounted dielectric ring having
a circumferentially magnetized ferrite ring at its inner
or outer surface. It was felt that the circular symmetry
of such a structure would prevent the excitation of many
undesirable modes. However, it was not clear whether
higher order TE,, modes, which were capable of propa-
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gating in the dielectric loaded region, would seriously
affect the design. It was decided that initial effort should
be of an exploratory and experimental nature to deter-
mine general feasibility. If the exploratory measure-
ments were promlising, some attempt could be made to
arrive at an improved design by analytical methods in
order to conserve the limited supply of ferrite rings.

III. EXPLORATORY MEASUREMENTS

The orieuted {errite rings, fabricated by North
American Philips Laboratories, had wall thicknesses of
approximately 0.050 inch and mean radii approaching
the values of 0.109 inch and 0.263 inch computed as
solutions of (1). It had been intended that these rings
would be ground to a very thin wall and used as an
approximation to the configuration suggested by Fox,
Miller and Weiss [1]. However, it did not appear
mechanically possible to grind the small rings to a wall
thickness of less than 0.010 inch.

Exploratory measurements indicated that thin fer-
rite rings (wall thickness 0.010 inch), mounted carefully
and concentrically with polyfoam supports, did not dis-
turb the mode purity to a great extent and did provide
nonreciprocal attenuation. This prompted further in-
vestigation, which involved dielectric loading of the fer-
rite rings using alumina ceramic (e=9.5). Measurements
indicated that the nonreciprocal attenuation character-
istics of the magnetized ferrite rings were indeed en-
hanced when they were surrounded by a dielectric cylin-
der. However, development of a useful isolator required
a reduction in the ferrite ring wall thickness [5].

For this purpose, the dielectric loading, which had
proved to be electrically desirable, was also mechani-
cally advantageous. When a small ferrite ring was
bonded to the inside of a ceramic cylinder it was possible
to grind the ferrite to a wall thickness of 0.004 inch. The
dimensions of this ceramic and ferrite configuration are
shown in Fig. 1(a). In order to determine the effect of
variations in dielectric wall thickness. additional ceram-
ic cylinders were ground so that they could be slipped
over the first cylinder as in Fig. 1(b), thereby increasing
the total wall thickness. Attenuation measurements for
three different dielectric wall thicknesses are given in
Fig. 2. The measurement techniques, as described in
Appendix I, use an averaging process for determining
the approximate attenuation. It will be noted that a
fairly appreciable attenuation peak occurred in the for-
ward direction near 34-34.5 Gc and above 36 Gc when
a wall thickness of 0.035 inch was utilized. As the wall
thickness was increased, these peaks appeared to shift
out of the band of interest. To test the precision of the
measurements a completely independent recheck was
made on the same isolator elements at a later date.? In
general, the repeated measurements followed the orig-
inal measurements quite closely, although, in the case
of the 0.035 inch dielectric wall, some deviation was

2 Unpublished status report.



394 IEEE

Ll

v — ——
¢ 4

4
250%™ L
F— 300>
700" ~——>

<L

—_—f R —_— —

AW \+ <
035 010" or
020"

(b)

Fig. 1—(a) Ferrite ring mounted inside of ceramic cylinder having
wall thickness of 0.035 inch. Cylinder wall tapered at each end
for matching. (b) Configuration of (a) with additional ceramic
sleeve used to increase the cylinder wall thickness. Isolators were
constructed by mounting these configurations concentrically in
circular waveguide using polystyrene foam supports.
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. 2—Forward and reverse attenuation of configurations in
Fig. 1(a) and (b) as a function of frequency.
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noted in the vicinity of the forward attenuation peak
near 34 Gc.

One of the large ferrite rings also was tested.? The
measured forward and reverse attenuation are plotted
in Fig. 3. Note that, for this ring, maximum attenuation
occurs near 37 G, indicating that the anisotropy field
may be slightly higher than it was in the smaller ferrite
rings.

An indication of the mode purity also was obtained
during measurements of power level. The definition for
mode purity used here is: The ratio in decibels of the
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Fig. 3—Forward and reverse attenuation as a function of frequency
for ferrite ring of 0.545-inch OD bonded to outside of 0.537-inch
OD ceramic cylinder having 0.055-inch wall thicknessand tapered
ends.

power propagating in the TE, mode to the power
propagating in an unwanted mode. An average power
level in the waveguide may be obtained, as indicated in
Appendix I, by averaging the maximum and minimum
values of the circumferential variation of energy coupled
to an external detector through a small hole in the cir-
cular waveguide wall. The magnitude of this variation
provides a measure of the ratio of the unwanted signal
at the coupling hole to the TEy mode signal. As noted
in Appendix I, a 1-db angular variation corresponds to a
TE;; mode impurity about 20 db below the TEy mode
output. A 3-db variation corresponds to a TEy mode
impurity roughly 15 db down.

The attenuation measurements of Fig. 2 were made
using mode filters between the ferrite loaded section and
the coupling hole to improve measurement accuracy.
The maximum angular variation noted for the configu-
rations of Fig. 1 at any of the test frequencies, when
these filters were used, was of the order of 3 db in the
direction of small attenuation. (See Henschke [6]).
Thus a minimum (most pessimistic) mode purity of
about 15 db is indicated. Similar techniques were used
in the measurements of Fig. 3, the angular variations for
this case being of a generally comparable order of mag-
nitude. The fact that the forward attenuations shown
in Figs. 2 and 3 are fairly low at most frequencies is
further indication of reasonably high mode purity. Ex-
cessive mode conversion should result in high energy
loss in the filters and thus in large forward attenuation.
The angular variation measured in the direction of re-
verse attenuation was generally larger than in the for-
ward direction. Reasons for this difference in angular
variation for the forward and reverse attenuation direc-
tions are given in Appendix I, together with additional
measurement details.
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While the data plotted in Figs. 2 and 3 are approxi-
mate, the exploratory measurements were felt to have
established the fact that significant nonreciprocal at-
tenuation was obtainable from the configurations of
Figs. 1 and 3. Furthermore, the observed angular varia-
tions in the transmitted signal indicated that the mode
purity was not severely degraded in the direction of for-
ward transmission. Further improvement is necessary if
a mode purity of 20 db is to be achieved, but the ob-
served results seem reasonable for a first attempt. The
problem is apparently one of developing more precise
fabrication techniques.

The forward attenuation peaks, or spikes, shown in
Fig. 2 for 0.035-inch and 0.045-inch wall thicknesses, are
attributed either to unwanted mode conversion or to
possible higher order TE,, modes. The fact that these
peaks tended to shift outside the band of interest as
the wall thickness was increased is considered to be of
some importance. However, it was felt that adequate
evaluation of the test data required a better understand-
ing of the nature of the TE,, modes propagating in the
dielectric-cylinder-loaded waveguide. A theoretical cal-
culation was therefore made of the field distribution in
this transmission structure.

IV. TEs, FIeLD DISTRIBUTION

Boundary Values Solution

A cross section of the dielectric cylinder-loaded wave-
guide is shown in Fig. 4. The cross section of this wave-
guide is divided into air-filled regions I and III and the
dielectric region 11, bounded by the dielectric cylinder
radii 7, and 7.

Solutions of Maxwell’s equations in cylindrical co-
ordinates result in the following longitudinal magnetic
field expressions [7]:

region I, HZ]_ = A1]0(k17’) + BlN()(kﬂ’) kl #= 0 (2)
region II, Hzy = AgJo(kar) + BaNo(kar) ka0 (3)
region III, HZg = Ag]o(kﬂ’), (4)

where J(kr) is the zero-order Bessel function of argu-
ment k7 and No(kr) is the zero-order Neumann function
of the same argument.

The circumferential electric field in each region is
found from

Jwpe dHz

= , 5
B == )

All of the above fields have a propagation factor
eit=62) which has been omitted to simplify the notation.

The relationship between the cutoff wave numbers
k1 and k; and the propagation constant 8 =w/v, is given
by

B? = wluoer — ki® } , ©

ewzﬂoéo - k22
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Fig. 4—Cross section of waveguide containing
concentric dielectric cylinder.

where, as before, w+/uoeo=2m/No=Fo, the free space
propagation constant. The relation between £, and k,
obtained from (6) is

k22 — klz = (é - 1)]602. (7)
Note that when 0 < k2 <ky?, 82 <ko? and the phase veloc-
ity of propagation v, is greater than the velocity of light.
On the other hand, when eky®— ks> k2, the phase veloc-
ity is less than the velocity of light and there exists
what might be called a “slow-wave” mode of propaga-
tion. The latter case requires k2 <0 and leads to fields
in the air-filled regions which decay as a function of the
radial distance away from the dielectric cylinder. In all
cases, the field solutions in the three regions must satisfy
the boundary matching conditions

E¢p1 =0 atr = a (8)
E = E 2

¢ ¢ }r =7 (9a)
Hz1 = Hz,
E¢y = E

P2 ¢3}r — (9b)
HZz = H.'Zg
E¢; =0 atr = 0. (10)

Relation (10) is satisfied in region 111 by choosing the
longitudinal magnetic field representation of (4).

Details of the field solutions are given in Appendix II.
A general form for the characteristic equation obtained
from the matching conditions (9a) and (9b) is

E¢s(kar ]
¢3( ! 2) = ]w,uo Cf(k272, kzrl)
HZg(kﬂ’Q) kz

T?’L(kg?’l, k21’2) -

jw,ug Hzl(kl:rl)

kq E¢1(kl@)— \

ks Eéu(kur)
1 ct(hars, bars) & — Lpu(kar)

, (11
Jwiko HZ1(k1?’1) [
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where the functions ct(ksrs, keri), ct(ker;, kers) and
T'n(kor1, kars) are radial cotangent and tangent functions
defined, plotted and tabulated by Marcuvitz [8]. The
form of the field solutions in the air-filled regions I and
II1 is dependent on whether a “fast-wave” or a “slow-
wave” case is under consideration. For the “fast-wave”
case we must have, using (7),

0 < ke < k¢?

(e — ko> < hs® < ko, (12)

From (12) we see that if €3>1, &, is relatively constant
for all “fast-wave” solutions.

The ratios E/H in (11) may be written for the “fast-
wave” case as

E¢y(kyr1) _ Jupo
Hzl(kln) k1

E¢3(k17’2) _ _jwﬂo ]1(k17’2)
Hzs(krs) ki Jo(kars)

Tﬂ(kﬂ’l, k1(1) (13)

(14)

For the “slow-wave” case we have k;2 <0, the relation
(7) yielding the limits

—(e— Dk < k2 <0

0 < ky? < (e — 1)kot. (15)
We also find
Ed¢i(kiry) _ Jopo g (16)
HZl(lel) kl P
Eg¢y(kirs) _ —geno Ti(krs) 17
HZg(kli’z) kl IO(kl"?)
where, from the field expressions in Appendix II,
<K1(k171)) <Il(k171)> < Kl(kld)>
g _ Ko(kﬂ’l) Il(kl(l) K()(kﬂ’l) . (18)

P <Ig(k17’1)) < Kl(kld))
1+
[1(131(1) K()(kﬂ’l)

The functions Iy(kirs), I;(kirs) are related to the zero-
and first-order Bessel functions of imaginary argument,
while Ko(kir) and K;(kir) are related to the zero- and
first-order Hankel functions of the first kind having
imaginary arguments.

The ellipticity of the RF magnetic field at the dielec-
tric boundaries 7;, 7, may be expressed in terms of the
ratio of the field components. We have the general rela-
tion

H, = i E¢. 19)
WHo
Hence the ellipticity ratio at r=r; is given by
Hri(kyri) B E¢i(kir1)
e = —— (20)
HZ1(k17’1) Wio HZ1(k11’1)
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and at r =7,

H7’3(k17’2) ,3 E¢3(k172)
g = e = — e T ¢2))
HZa(kﬂ’z) Wiko HZ;;(kl?’z)
For the “fast-wave” case we have,
B
Ri=—7 W Tn(kirs, k1a) (22)
1
Jilkyr
Ry —j 2 Sullars) (23)
k1 Jo(kﬂ’z)
The “slow-wave” solution yields
Bl Q|
Ri=—j—| = 24
SN ) 24
B ILi(kars)
Ry =j— (25)

By Io(Fars)

For the “fast-wave” condition %2> 0, one may deter-
mine %; as a {unction of 7; and 7, by solving the char-
acteristic equation (11) [substituting (13) and (14) with
condition (12)] simultaneously with (6). Obviously
when r=ry, k1=23.8317/a. However, as the wall thick-
ness 71—7g increases from zero, one would intuitively
expect that there must be a corresponding decrease in
k12 At some point the solutions should change to those
for the “slow-wave” condition, where %:2<0. As the
thickness is increased further, the slow-wave condition
should hold and |%:|2 should increase. One may deter-
mine | k1| as a function of 7; and 7, when k12 <0 by sub-
stituting (16) and (17) into (11) and solving (11) simul-
taneously with (6), using the limiting condition (15).

The modes described thus far appear to be the basic
TEq fast- and slow-wave modes. As the wall thickness
71—7; increases, one might expect to find higher order
“fast-wave” and “slow-wave” solutions. It is possible
that these higher order modes could occur at thicknesses
for which the TEy slow-wave mode also exists.

From an isolator design standpoint, it is desirable
that the ellipticity at the dielectric boundary should
have unit magnitude. To achieve this over a reasonable
bandwidth, the ellipticity ratios should have the func-
tional behavior given by expressions (24) and (25) so
that propagation is in the “slow-wave” mode (k2<0).
Furthermore, ] k1| should be large. This is seen from the
following considerations.

The limiting conditions (15) indicate that || may
be fairly large if the dielectric constant is large.® Hence,
both Ikﬂ’g’ and ]kl(a—ﬁ)‘ may be large. Asymptotic
expansion of the ratio | Q/P| indicates that this function
has essentially unit magnitude for large argument. The
ratio Iy(kirs)/Io(ki7s) also approaches unity. The ratio
B/| kil in (24) and (25), for k2~ (e—1)ko? and ky? very
small, will be seen from (6) to approach +/¢/e— 1, which

# For any practical values of #, 7, and a.
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is approximately unity if e>>1. Thus, all {actors in the
ellipticity ratios (24) and (25) have magnitudes ap-
proaching unity when |k1| ?ig large.

Although | k12| may change as a function of frequency
and wall thickness, the ellipticities defined by (24) and
(25) should be insensitive to these changes because of
this tendency to approach a definite limit for large | ks | .
This is the condition described in Section Il in connec-
tion with isolator broadbanding. The “fast-wave” mode
ellipticities (22) and (23) (k%*>0) do not approach a
limit for large k1| , and should be sensitive functions of
both frequency and wall thickness.

V. NUMERICAL COMPUTATION

In order to check the preceding theory, specific ring
dimensions were chosen and an attempt was made to
find a solution of the characteristic equation at 35 Ge.
The dimensions chosen were those of a dielectric ring
combination used in one of the experimental isolator
configurations of Fig. 1, having r.=0.109 inch and r,
=0.154 inch. The dielectric permittivity of the high pur-
ity alumina ceramic material from which the rings were
constructed was taken to be e=9.5. Values of the radial
tangent and cotangent functions were obtained from
curves and tabulations in Marcuvitz [8]. A “slow-wave”
solution of the characteristic equation was found, hand
computation indicating that for the above values of 7,
and rg, kB2~ —1/2(e— 1)k

The ellipticity at the boundaries », and 7, was com-
puted from (24) and (25) using (6) and the limits indi-
cated by (15). These are plotted in Fig. 5 as a function
of the normalized cutoff constant, p= ikll /v (e—1)kq.
It will be noted that at the inner boundary r,=0.109
inch, the ellipticity ratio is approximately unity for all
values of p.

Small argument limits were obtained by substituting
for the I and K functions in (24) and (25) their small
argument approximations. For |k11 X1,

a2
Ry zjk()(—— — 71>
71

+ terms of order | k1| and | k1[2(In | ki)

-+ higher order terms (26a)
kg?’z
Ry = —j—; —+ terms of order I k1|
+ higher order terms. (26b)

If the terms involving | | are neglected and if 72=No/m,
it is apparent from (26b) that the magnitude of Re
should approach unity. From (26a), R; should have a
magnitude approaching unity if kyri=+/1-4-k2a?—1.
Numerical computation using (26b) at a frequency of
35 Gce indicates that if Ry is to have unit magnitude for
small values of Ikll, we should indeed find 7; to be
0.109 inch. Similarly, an outer radius for which the
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Fig. 5—H,/H, as a function of normalized cutoff constant, at the
inner and outer boundaries of a ceramic cylinder with ID 0.218
inch, OD 0.308 inch.

magnitude of R; should approach unity when !kll is
small is #1=0.263 inch.

The numerical results in the preceding paragraph and
in Fig. 5 indicate that the experimental configurations
of Fig. 1 should tend to have unit magnetic field elliptic-
ity at the inner boundary 7,=0.109 inch, and that sig-
nificant nonreciprocal attenuation therefore should in-
deed have been obtained. They also tend to support the
data in Fig. 2. The computations have additional sig-
nificance in connection with the design of isolators for
maximum bandwidth.

Intuitively, one expects “slow-wave” solutions of the
characteristic equation to be such that, for given r, and
72, |k1| satisfying (11) has a direct relationship to the
wavelength. At low frequencies the wall thickness is a
small fraction of a wavelength and the fields in the air
regions decay slowly as a function of the radial distance
from the dielectric. The field expressions are such that
for this to occur | ;| must be small. At high frequencies
the wall thickness becomes a large fraction of a wave-
length and energy tends to concentrate in the dielectric.
When this occurs, the fields in the air region decay
rapidly and |&| is large. If extreme bandwidth is de-
sired, one might use either (26a) or (26b) to calculate a
bounding radius for which almost circular polarization
should exist at the lowest frequency in the band of
interest, where | | is a minimum. At higher frequencies
| k1| should increase, and the magnitude of the elliptic-
ity should approach a limit of unity because of the na-
ture of the defining functions (24) and (25). Choice of
the ring wall thickness is influenced by the desired band-
width. However, it is also influenced by energy concen-
tration factors which have not been considered here.

VI. CoNCLUSIONS

Experimental data indicate that appreciable non-
reciprocal attenuation may be obtained from isolator
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configurations of the type described in Section III.
Analytical consideration of the boundary value problem
of a dielectric ring mounted concentrically in a wave-
guide propagating the TEy mode has yielded expres-
sions for magnetic field ellipticities at the ring bound-
aries which tend to support the experimental data.

APPENDIX 1
EXPERIMENTAL MEASUREMENT TECHNIQUES

Exact measurement of attenuation and mode purity
in TEy mode circular waveguide is extremely difficult.
However, reasonable indications of the attenuation may
be obtained by a fairly simple, but approximate, pro-
cedure which utilizes a TE;, rectangular waveguide
power detector coupled to the circular waveguide
through a small coupling hole. The rectangular wave-
guide must be oriented so that its broad walls are paral-
lel to the circular waveguide axis, thus insuring that
coupling is to Hz in the circular guide. The circular
guide beyond the coupling hole is terminated in a
matched load. If only the TEy mode is present, power
coupled to the output waveguide detector is independ-
ent of the angular location of the coupling hole. How-
ever, if mode impurities are present, the output power
will be a function of angular position since the longi-
tudinal magnetic field components of these modes are
functions of the circular waveguide angular coordinates.
The output signal will also be a function of the relative
phases of the various modes, which are functions of the
distance of the coupling hole from the point at which the
impurities are generated.

The measuring procedure used to obtain the data of
Figs. 2 and 3 was one in which the output power de-
tector was attached by a rotating connection to the out-
put of a length of circular waveguide which was to serve
as the “test fixture.” An average power output from the
empty test section was obtained by averaging the maxi-
mum and minimum levels noted as the detecting ele-
ment was rotated through an angle of 360°. Care was
taken to use reasonably perfect waveguide, and radial
vane [9] mode filters were used near suspected discon-
tinuities and immediately in front of the detector cou-
pling hole. However, there was generally a residual angu-
lar variation in power level of the order of a decibel cor-
responding to a TEy (most pessimistic) mode impurity
roughly 20 db below the desired mode.

Isolator configurations were measured by inserting
them in the test waveguide and averaging the maximum
and minimum output power levels as the detector was
rotated through an angle of 360°. The difference in aver-
age power level measured with and without the attenu-
ating element in the waveguide served as an indication
of the attenuation in the ferrite element.

For isolators having appreciable reverse attenuation,
the angular variation in the reverse direction sometimes

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

July

became quite large. The reason for this result is clearly
the fact that the TEqx mode was attenuated, reducing
the nonvarying component of Hz. On the other hand,
unwanted modes were transmitted with little or no at-
tenuation, so that their relative amplitudes become
larger when compared with the amplitude of the attenu-
ated mode. For this reason it was sometimes necessary
to average power levels which might vary between, say
12 and 18 db giving an average reading of 15 db. How-
ever, if this variation was reduced, say, from 6 db to 3
db, by additional filtering, the average level still re-
mained at about 15 db. When the preceding measuring
technique is used, highest measurement accuracy should
be obtained for angular variations which are small com-
pared to the magnitude of the average attenuation be-
ing measured. Thus, forward attenuation measurement
accuracy will be greatest when the angular variation in
output power is minimized. Larger attenuation swings
should be tolerable in the direction of reverse attenua-
tion because the reverse attenuation is generally higher.

ArpreENnDIX I1

DERIVATION OF FIELD EXPRESSIONS AND
CHARACTERISTIC EQUATION

From the basic expressions for longitudinal magnetic
field (2), (3), (4), and the relation (5), we may write
for the fields in region 1,

HZ;[ = A1Jo(k17‘) + BlNo(kﬂ’)

—Jwio

27

(28)

E(;bl = [A]_]l(kﬂ‘) + B1N1(k11’)].

1

The boundary condition (8) requires that A,Ji(ka)
= — B1Ni(kwa), vielding final expressions for the fields
in region I,

Ay
HZI = m [jo(kﬂ’)Nl(kla) - No(kﬂ')]l(kld)] (29)
Bor =22 2 ) W)
1= I Nl(kla) 1{R17) V1(R1Q
- N[(kﬂ’)]1(kla)]. (30)

Although these solutions are not valid at k=0, they
approach a finite limit for small values of k;. The ratio
E¢1/Hz may be expressed in terms of the large radial
tangent function defined and tabulated in Marcuvitz
[8], as indicated in (13).

The fields in region II may be written,

HZz = Az]o(sz) + Bgl\fo(kzr) (31)

—j Who

F¢y = [AoT1(kar) + BoNy(kor)]. (32)

2
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The matching condition (9a) results in the following
solutions for the constants:

A2 - (’fl’k21'1>
2
_k2
. I: ; Ed)l(klrl)No(kgfl) b HZl(klfl)JVl(kQ?’l):l (33)
Jwko
k
e

Then,

k
N ? E¢1(k171)]0<k27’1) + HZl(k17’1>j1(]€27'1):| . (34)
Jwto

Hay = (Wk2m> {Hzl(km) [T 1(kar) N o)

_ Nl(kgf'l)]o(kﬂ’)]

ky

—I— Ed’l(klrl) [Jo(k;)fl)ZV()(/?;ﬂ’)

Jwko

- .Vo(kg?’l)]o(kgf)]} (35)

— fwu kot
E2 = ]]3 0 (T 22 1) {HZ1(k1?’1) [J1(]€21’1)17V1(k27’)
2

— 1V1(k27'1)]1(k2r)]

ks

N E¢1<k17’1) [1V0(k21’1)]1(k27’)
Jwho

— Jo(k27’1)N1(k27’)]} . (36)

The matching condition (9b) leads to the characteristic
equation
E¢s(kirs) _ Joto
HZg(k11’2) ko

fl(k27’2, kz”l)

ky  E¢i(kiri)
jw,uo HZ1(k17’1)

g(kars, kors) —

be EdCeny | (37)
2 1{ K171
kor1, B _
f2( o1 27’2) +jw,uo HZ1(k17'1)
where
fl(szz, k27’1)
_ [NVo(kors)J1(Rars) — Jo(kory) Ni(kers)] (38)

[Jo(kar) No(kars) — No(kar1)To(kars)]’

which is immediately identified in Marcuvitz [8] as
Ct(kz’l’g, kz?’l).
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The function

[]10327’1) Ni(kors) — N1(kor1)J 1(:}327’2)]

g(kary, kory) =
i [ No(Rars) T 1(kars) — To(kars)Na(kars)]

(39)

may be identified as T (kar1, kors).
Finally,
[J1(k27'1) No(sz'z) - Nl(k2i’1)fo(k27’2)]

Jolkors, kors) = [To(kary) No(kars) — Nolkar)Jo(kars)] 4o

which may be identified as the function c¢i(ksrs, kos).
The fields in region 111 become

Hzs = AyJ (k)

—jwmo

(41)

E¢)3 = Ag]l(klf’)y (4:2)

1

where 43 may be obtained from the matching conditions
(9b), leading to the characteristic equation (37).

When £;2<0, the fields in regions I and 111 become
functions of imaginary argument. The Bessel functions
of imaginary argument are defined and tabulated, and
the fields in region II1 can be immediately written in
terms of these functions by substituting jk for k& in

(41) and (42). We then obtain
HZ3 = Aglo(kﬂ’) (43)

—Jwpko
E¢3 =

A3[1(k11’) N (44)

1

The fields in region | must, however, be re-expressed
in terms of Bessel functions and Hankel functions of the
first kind, since the latter function is defined and tabu-
lated for imaginary argument but the Neumann func-
tion is not. When this is done and jk; is substituted for
ki in (29) and (30), the field solutions in region I be-
come

(4 +4By)
B Kl(kla)

_ (41 + jBy)
K1(k1d)

[Zo(kyr) K1(k10) + Ko(kyr)I1(k1a)]

21

P(kﬂ', kld)7 (45)

and
_ Josko (Al + jBx)
ko Ki(ka)
[ K1k [1(k1a) — (k) K1(k1a)]
Jwo (A1 + jBl)
Tk Ki(ka)

B¢,

Q(kar, k1a). (46)

Definitions of the I and K functions are given in
Ramo and Whinnery [7]. The definitions include multi-

plicative constants which ensure that these functions
are always real.
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Modes in Coupled Optical Resonators with Active Media

J. R. FONTANA, MEMBER, IEEE

Summary—-A general method is proposed to analyze the proper-
ties of optical systems composed of several coupled resonators. It is
shown that by using appropriate matrices to represent the fields in
the resonators and the couplings between them, an equation can be
written, often by inspection, for the eigenvalue s = jw which gives
the frequency and the rate of growth of the fields for all the modes
of a given system.

A re-entrant coupled system with loss and gain regions is dis-
cussed as an example. The effects of changes in mirror transmission,
resonator length and medium properties are studied using the
method.

I. INTRODUCTION

T HAS BEEN suggested by various authors!-2 that
optical masers with desirable properties could be
obtained by operating the active medium in a sys-
tem of coupled optical resonators rather than in simple
structures of the Fabry-Perot type. In the latter many
modes of oscillation are allowed, separated by equal
frequency intervals and with relative growth rates
which depend only on the active medium and not on the
resonator. Simultaneous oscillation in several modes is
thus possible within the linewidth of usual materials.
Manuscript received February 12, 1964; revised Maich 16, 1964.
The author is with the Department of Electrical Engmeermg,
Un1ver51ty of Minnesota, Minneapolis, an
1D, A. Kleinman and P. Kisliuk, “Discrimination against un-
wanted orders in the Fabry-Perot resonator 7 Bell Sys. Tech. J.,
vol. 41, p. 453; 1962,

2 M. Birnbaum and T. L. Stocker, “Mode selection properties of
segmented rod lasers,” J. Appl. Phys., vol. 34, p. 3414; 1963.

Coupled systems can have modes with unevenly spaced
frequencies and different rates of growth or of attenua-
tion if lossy materials are used as well as active media.
These properties depend on the resonant system as well
as the materials, and are determined by mechanical de-
sign and adjustment. Possible features include selective
mode suppression, so that only one mode oscillates, or
so that only two oscillate with controllable frequency
separation.

The properties of arbitrary coupled resonator systems
can be studied as an eigenvalue problem. The time-
dependence properties of each mode are given by the
complex exponential exp (st), where s =04 jw expresses
the frequency of oscillation and the rate of growth or
decay of the mode. The form of the eigenvalue equation
specifies the freedom one has to choose the eigenvalues
s; that is, it shows the possibilities and limitations of
each particular system and also of coupled systems in
general. The analysis is greatly simplified by considering
that the traveling waves inside the resonators are ap-
proximately TEM. Use can thus be made of equivalent
circuits with coupled TEM transmission lines.

II. Two-MIRROR RESONATORS

To introduce the method proposed, we consider first a
simple, uncoupled system. Fig. 1(a) shows a resonator
formed by two identical mirrors in a medium assumed



